Bird Mating Optimizer for Combinatorial Optimization Problems
نویسندگان
چکیده
منابع مشابه
An Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems
Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...
متن کاملFirefly Mating Algorithm for Continuous Optimization Problems
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females...
متن کاملCity Group Optimization: An Optimizer for Continuous Problems
rights, including translation into other languages reserved by the publisher. No part of this journal may be reproduced or used in any form or by any means without written permission from the publisher, except for noncommercial, educational use including classroom teaching purposes. Product or company names used in this journal are for identification purposes only. Inclusion of the names of the...
متن کاملAn Adaptive Multi-Swarm Optimizer for Dynamic Optimization Problems
The multipopulation method has been widely used to solve dynamic optimization problems (DOPs) with the aim of maintaining multiple populations on different peaks to locate and track multiple changing optima simultaneously. However, to make this approach effective for solving DOPs, two challenging issues need to be addressed. They are how to adapt the number of populations to changes and how to ...
متن کاملFlying Squirrel Optimizer (FSO): A novel SI-based optimization algorithm for engineering problems
This paper provides a novel meta-heuristic optimization algorithm. The behaviors of flying squirrels in the nature are the main inspiration of this research. These behaviors include flying from tree to tree and walking on the ground or on a tree branch to find food. They also contact each other with chirp or squeak. This algorithm is named flying squirrel optimizer (FSO). Two main theories of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2993491